欢迎访问成人学历报考中心网站!

客服热线:13057621910

您现在的位置:首页 > 成人高考 > 模拟试题

2023年成人高考专升本《高数二》备考笔记(6)

来源:成人学历报考中心发布日期:2022-04-18

极值存在的必要和充分条件

考点一 极值存在的必要条件

设点P₀(x₀,y₀)为z=f(x,y)的极值点,且z=f(x,y)在点P₀(x₀,y₀)处的偏导存在,则必有fₓ(x₀,y₀)=0,fᵧ(x₀,y₀)=0.

考点二 极值存在的充分条件

设函数z=f(x,y)在其驻点(x₀,y₀)的某个邻域内有二阶的连续偏导数,令A=fₓₓ(x₀,y₀),Bₓ(x₀,y₀),C=fᵧᵧ(x₀,y₀),△=B²-AC,于是有

(1)如果△<0,则点(x0,y0)是函数的极值点,且

当A<0时(x₀,y₀)是极大值;当A>0时,f(x₀,y₀)是极小值。

(2)如果△>0,则点(x₀,y₀)不是函数的极值点.

(3)如果△=0,则函数z=f(x,y)在点(x₀,y₀)有无极值不能确定,需用其他方法判别.

条件极值的求法

先构造拉格朗日函数:F(x,y,λ)=f(x,y)+λϕ(x,y).

求解方程组

Fₓ=fₓ(x,y)+λϕₓ(x,y)=0,

Fᵧ=fᵧ(x,y)+λϕᵧ(x,y)=0,

Fλ=ϕ(x,y)=0;

解出x,y,λ,则其中点(x,y)就是z=f(x,y)在条件ϕ(x,y)=0下的可能极值点的坐标.

求二元函数的无条件极值及极值点

求二元函数的无条件极值的步骤:

第一步:求fₓ(x,y),fᵧ(x,y),并解方程组fₓ(x,y)=0;fᵧ(x,y)=0求得一切驻点;

第二步:对于每一个驻点(x₀,y₀),求出二阶偏导数的值A,B和C;

第三步:定出B²-AC的符号,判定点(x₀,y₀)是否是极值点,若是,判定是极大值点还是极小值点,并求出极值f(x₀,y₀).

求二元函数的条件极值

求二元函数f(x,y)在条件ϕ(x,y)=0下的极值的方法与步骤:

方法一:化条件极值为无条件极值

第一步:从条件ϕ(x,y)=0中,求出y的显函数形式y=ψ(x);

第二步:将y=ψ(x)代人二元函数f(x,y)中,化为一元函数f[x,ψ(x)]的无条件极值;

第三步:求出一元函数f[x,ψ(x)]的极值即为所求.

方法二:拉格朗日乘数法

第一步:作拉格朗日函数F(x,y,λ)=f(x,y)+λϕ(x,y)(入为拉格朗日乘数);

第二步:由函数F(x,y,λ)的一阶偏导数组成如下方程组

Fₓ(x,y,λ)=fₓ(x,y)+λϕₓ(x,y)=0,

Fᵧ(x,y,λ)=fᵧ(x,y)+λϕᵧ(x,y)=0,

Fλ(x,y,λ)=ϕ(x,y)=0;

第三步:求解上述方程组,得驻点(x₀,y₀,λ),则点(x₀,y₀)就是函数f(x,y)在条件ϕ(x,y)=0下的可能的条件极值点.

通常,判定所得点(x₀,y₀)是否为所给问题的条件极值点,常依据问题的实际意义判定:如果所求驻点唯一,且实际问题的确存在最大值(或最小值),那么,所求点(x₀,y₀)就是满足条件的极大值点(或极小值点),也是所给实际问题的最大值点(或最小值点).

声明:

(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。

题库资料
  • 真题精炼
    依据历年真题,快速梳理
    知识点,检验学习效果
    点击查看
  • 模拟试题
    依据考试大纲高质量
    模拟试卷
    点击查看
  • 教材大纲
    全力冲刺,紧抓考前机会
    全力冲考
    点击查看
热门推荐